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Numerical solution of partial differential equations 
 

              Numerical analysis is a branch of applied mathematics; the 

subject can be standard with a good skill in basic concepts of 

mathematics. This subject has many applications and wide uses in the 

area of applied sciences such as, physics, engineering, Biological, …ect. 

So, when any body wants to study this subject, should be to get answers, 

which do not agree with experiment or observation data. This is because 

there always has to be careful choice of the mathematical model that is to 

be used to describe a particular phenomenon. The problems of the real 

subject of P.D.Es are possible great complexity involving many physical 

effects (or other sciences) and a considerable set of non-linear equations. 

These problems can not be solved either by advanced techniques or by 

putting then on the computer. The techniques do not exist and the 

machines are neither powerful enough nor sophisticated enough (to reject 

spurious solutions). the problem only be omitting, after much careful 

thought, perhaps and special case can be dealt with analytically , and this 

will show what sort of calculation the machines must be programmed for 

more general case. After determine the mathematical model for the 

problems, should be try to solve it. For this situation, we need good 

mathematical procedure to simplified or linearized problems, which are 

non-linear or involving complex geometries, or both. Here the numerical 

techniques such as finite difference, finite elements, differential 

quadrature ,….ect;are play important role to computational of problems 

are described by a set of linear and/or non-linear equations.       

 
Important examples of the three type equations are the 
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          Before derivation of finite difference formulas, which are using to 

approximation partial differential equations, we wanted to introduce 

classification of  second order linear partial differential equations 
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And, also we need to give information about u on the boundary (C ) of      

(Fig(1) 

 

- given u on C  [Dirichlet problem] 

- given 
n

u




 onC , where n the norm [Neuman problem] 

- 
n

u
u




  , where  , are given, [Mixed problem] 

 
Example 1: 

      One end of a bar ft2 long .whose sides are insulated, is kept at the 

temperature C00 ,while the other end is kept at C010 . If the initial 

temperature distribution is linear along the bar, write down the boundary 

value problem that governing the temperature in the bar. 

        The bar has the length ft2  (i.e. Ω = [0,1]), then by conservation law of 

energy ,we have  

 
                               ),()(),( 1 txuxxuKAxtxAus xxt   

 

Where the constant s is the specific heat of the material,  is the mass per 

unit volume, and 1x  is between xxandx  , K is  the thermal conductivity 

( positive constant), and A is the area of a cross section . Dividing through 

in this equation by xAs   and then letting x  approach to zero, we obtain 

the equation  
                             ),(),( txuxtxu xxt   0,20  tx  

 

Where  sK / is the thermal diffusivity of material.  

 One end kept at the temperature C00 and the other end is kept at C010  

 
  0,10),2(0),0(  ttuandtu  

 

The initial temperature distribution is linear along the bar  

 
 20,5)0,(  xxxu  

 

 Therefore, the mathematical model for this problem is  
                                          xxt uu   

                            0,10),2(0),0(  ttuandtu  

                                    20,5)0,(  xxxu      

Example 2: 

       A string is stretched between the fixed points )0,1()0,0( and  and 

released at rest from the position )sin( xAu  ,where A is a constant. Write 
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down the mathematical model that governing the transverse displacement 

of a string. 

       The mathematical model for this problem is   

 
xxtt uu 2 (For derivation you can see Churchill R. 'Fourier sires and Boundary Value Problems' 

page 5 ) 
0,0),1(0),0(  ttuandtu (A string infixed at points )0,1()0,0( and  there is no 

displacement) 

 10,)sin()0,(  xxAxu  (Initial displacement, at 0t  ) 

Depending on the above information, the following is a rough summary 

of well-posed problems for second-order partial differential equations: 

 

    elliptic equation           plus boundary conditions 

    parabolic equation       plus boundary conditions with respect to space 

                                        plus initial condition with respect to time 

    hyperbolic equation  plus boundary conditions with respect to space 
  

  Finite difference methods 

     One of the greatest needs in applied mathematics is a general and 

reasonably short method of solving partial differential equations by 

numerical methods. Several methods have been proposed for meeting this 

need, but none can be called entirely satisfactory. They are all long and 

laborious. Certain types of boundary value problems can be solved by 

replacing the differential equation by the corresponding difference 

equation and then solving the latter by a process of iteration. This method 

of solving partial differential equations was devise and first used by 

Richardson (1910). It was later improved by Liebmann(1918) and further 

improved more recently by Shortley &Weller (1938).the process is slow, 

but gives good results on  boundary value problems which satisfy Laplace 

, Poisson, and several other partial differential equations. A strong point 

in its favor is that an automatic sequence-controlled calculating machine 

can do the computation.  

          A somewhat similar method is the relaxation method devised by 

Southwell. This method is shorter and more flexible than the iteration 

method, but is not adapted to automatic machine computation. In both of 

these methods the approximate solution of a partial differential equations 

with given boundary values, is found by finding the solution of the 

corresponding partial differential equation. 
        

Operators: it is a mathematical operation on an operated function. 

                   - Shifts (translation) operator )()( hxfxEf    

                   - Difference operator )()()( xfhxfxf      

                   - Inverse difference operator )()()( hxfxfxf    

                   - Intermediate operator )2/()2/()( hxfhxfxf    
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Properties of operators: 

 Linearity of operator                )()()( gEfEgfE   

 Product of operator                  fEfEEE 3  

 Sum and difference operator  )()()()( xDfxEfxfDE    

 Equality of operator                )()( 2121 xfExfEEE   

 Identity(unit) operator            )()( xfxfI   

 Null(zero) operator                0)(0 xf  

 

Exercise1:            Prove that       (a) 1 E  

                                                    (b) nn DEDE   

                                                    (c) hDeE   

Inverse operator: it is a mathematical operator that inverse the original 

operation. 

         For example; Shifts operator is )()( hxfxEf  , the inverse of it is 

                                          )()(1 hxfxfE    ))1(( 1 EE  

                                        Difference operator 1 E , the inverse of it is 

                                          11  E  

              Show that          
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Finite difference formulas: 
                  Now, the area of integration     is covering by rectangular 

meshes ),( tnxiPPij  , are called mesh points. For a function u  of a 

single variable, the familiar expression
x

xuxxu



 )()(
, is called difference 

quotient, whose limiting value is the derivative of )(xu with respect to x  

i.e.   

x

xuxxu
xu

x

xuxxu
xu

x 











)()(
)(

)()(
)( lim

0

………………...(2) 

That is mean; a difference quotient approximates the derivative, the 

approximation becoming closer as x become small. 
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Suppose we like to solve the parabolic P.D.E. 
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This is finite difference representation of the parabolic P.D.E. 
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This is the general finite difference representation of the parabolic P.D.E. 
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